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Abstract—InvestigationOrganizer (IO) is a collaborative 
semantic web application designed to support mishap 
investigations, and has been used for accidents ranging from 
those involving only minor property damage to the loss of 
the Space Shuttle Columbia.  The development and use of 
IO in support of these investigations has provided 
significant lessons about the use of semantic web 
technologies in real-world systems.  IO is a data and 
knowledge repository for a wide range of mishap related 
information in which investigators meaningfully structure 
information and link together evidence, causal models, and 
investigation results.  The types of knowledge that 
investigators can include in the repository are defined by its 
investigation ontology, a component of the system that 
expresses investigation concepts using a logical formalism.  
IO developers can dynamically alter this ontology without 
having to recompile the application.  This paper describes 
the development of the investigation ontology for IO, 
focusing on its growth in response to user needs during the 
investigations, as well as efforts to control that growth.12 
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1. INTRODUCTION 

InvestigationOrganizer  

InvestigationOrganizer (IO) was developed starting in 2002 
as a new application of the Semantic Organizer system [1].  
IO is a data and knowledge repository for a wide range of 
mishap related information in which investigators 
meaningfully link together evidence, causal models, and 
investigation results.  It has been subsequently used in 
support of investigations into a wide range of aerospace 
accidents, helping to manage and distribute evidence, track 
the progress of elements of the investigation, and support 
the development of investigation results.  The investigations 
using IO range from an air show incident resulting in minor 
property damage to the loss of the Space Shuttle Columbia. 

The types of knowledge that investigators can include in the 
repository are defined by its investigation ontology, a 
logical formalism of the concepts in a particular domain [2].  
The ontology represents the heart of how the IO system 
functions, defining forms for knowledge entry, browsing, 
searching, and display.  While there were other tools that 
could have been used to develop this ontology (e.g., Protégé 
[3]), none of these tools at the time supported the 
collaborative and dynamic alteration of ontologies over the 
web.  Instead, the IO modeling mechanisms were used to 
build this ontology. This paper relates the experience 
developing and refining this ontology based on knowledge 
and experience from actual investigations that used IO. 
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2. ONTOLOGY DEVELOPMENT PROCESS 

Initial IO Ontology Development 

An initial version of the ontology for IO was created based 
on NASA Procedural Requirements for Mishap Reporting, 
Investigating, and Recordkeeping (NASA Procedure 
Guideline (NPG) 8621 [4]).  This conceptualization began 
as a series of sketches in PowerPoint (e.g. Figure 1) then 
was translated into a more structured ontology description 
before being formally represented in the IO system.  The 
original specification consisted of 29 classes and 228 
properties (142 relation types and 86 literal property types). 

Once this was done, two engineers with extensive mishap 
investigation experience reviewed the ontology, making 
mostly minor modifications.  The ontology was then tested 
by entering archived data from a minor mishap that had 
occurred at NASA Ames Research Center several years 
before, involving the failure of a Canard Rotor Wing 
(CRW) model.  This test included the creation of over 200 
instances of various classes in the IO system. 

Rapid Development 

Before development and testing was completed, IO was 
brought in to support an actual investigation when the 
Comet Nucleus Tour (CONTOUR) spacecraft was lost.  
Moving the tool into a real-time critical application caused a 
substantial shift in the way development of the system and 

the ontology were handled. 

Six months after the CONTOUR mishap, the loss of the 
Space Shuttle Columbia once again thrust the tool into an 
investigation support role.  The demands on the tool were 
examined and subsequent changes to the process were made 
to support these mishap investigations. 

Testing continued throughout these investigations, which 
had thrust the IO development team into an environment 
that was both high-pressure and high-visibility.  During 
each of these investigations, system developers did their 
best to accommodate ontology change requests as quickly as 
possible.  The rapid changes frequently bypassed any kind 
of review of the nature or impact of the changes to the 
overall system.  While each request made sense to the 
investigator at the moment, it was difficult to address the 
long-term impacts such changes would create.  For a more 
detailed review of how IO impacted these investigations, see 
the companion paper [5]. 

By the time the Shuttle Columbia investigation concluded, 
the ontology had grown to 64 classes, with more than 560 
properties (including 470 relation types and 93 literal 
property types). 

Figure 1 - The initial IO ontology conceptualization.  Each of the lines connecting classes represents an important 
semantic relationship (labels of these relationships were omitted for clarity).  Not included in the diagram, the 
concept includes many more relationships between the classes, and many of the classes have specialized subclasses  
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3. INITIAL FINDINGS 

User Studies 

Due to the close working relationships during these 
investigations, users were able to provide near real-time 
feedback on usage, features, and issues.  The team worked 
to incorporate these changes as soon as possible, and to use 
them to support subsequent investigations. 

During the initial start-up phase for the Columbia 
investigation, two of the primary users from the CONTOUR 
investigation provided important feedback based on their 
experience with IO.  After using the ontology to encode 
their information, they indicated that many of the relation 
types in the ontology were never used. 

During the Columbia investigation, several users 
complained that too many choices existed to classify items 
and relationships.  Subsequently, a NASA Human-
Computer Interaction (HCI) team performed a study of IO 
usage by the Columbia Accident Investigation Board 
(CAIB).  Their study found that "subtle distinctions between 
each of the different types ... complicated the process of 
choosing the correct type” or class and led to different users 
using different classes and relations to model similar 
information.  For example, the study found that most users 
were frequently choosing the more general class 
"Document" and none of its eight subtypes.  Users similarly 
avoided highly specific relation types, because they had 
difficulty quickly choosing the correct one. 

Despite its early shortcomings, there was a high level of 

interest in the tool, and NASA began to develop a 
"commercial-grade" version of IO with Xerox Corporation.  
An ontology review team was formed to make 
recommendations that would reduce the ontology to a more 
manageable size.  First, a report was produced as to how 
often each class, literal property, and relation was used 
during five investigations (the CRW test, a minor air show 
mishap investigation, CONTOUR, Columbia, and HELIOS) 
for which the system had been used.  This report was 
reviewed to determine which ontology components were 
actually used, and which might not be needed. 

In order, the most frequently used classes were 
“Document,” “Photo,” “Background Fact,” and “Finding” 
(Table 1).  “Visual Record” was also more heavily used than 
was expected given the extent of its subclasses.  Because of 
the unexpectedly high usage of “Document” and “Visual 
Record” classes, the ontology review team looked at several 
random samples of instances of these classes to determine 
whether users were overlooking existing subclasses or 
whether key subclasses were missing from the ontology.   

In the “Document” class the ontology review team found 
that some instances consisted of aggregated information 
(several types of documents in one), some were 
investigation logistics documents, and others were 
misclassified or could have fit within one of the existing 
subclasses of Document.  They also found that many of the 
“Visual Record” instances were, in fact, weather data such 
as satellite and radar images.  Based on this investigation, 
the sub-team created a few important new subclasses out of 
the existing, highly-used classes. 

Table 1. Usage (number of instances) of IO ontology classes during five air and space accident investigations.  Only 
the 40 most-used classes are shown. 

Class Usage  Class Usage 
Document 2990  Participant 86 
Photo 1196  Workgroup 71 
Background Fact 720  Chart 66 
Finding 632  Physical Evidence 61 
Analysis Report Record 404  Organization 52 
Fault Tree Node 399  Project Control Record 49 
Person 336  Video Recording 49 
Review Document 323  Drawing 42 
Visual Record 311  Interview 37 
Recommendation 273  Scene Map 37 
Event 220  Observation 36 
Investigator 205  Item Folder 33 
Action Item 181  Project Control Procedure 33 
Investigation Report Section 177  Training Record 25 
Request For Information 164  Photo Folder 22 
Record Folder 142  Item 21 
Orbiter System 140  Condition 20 
Potential Factor 128  Record 20 
System 124  Notes 18 
Document Folder 108  URL 18 
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Figure 2 - The pruning of the class tree.  At left is the class tree at the end of the Columbia investigation.  At right is 
the revised class tree showing greater depth.

Pruning Efforts 

The ontology review team set a threshold of use then 
removed or merged 18 classes and more than 200 relations.  
The labels of several relations were modified so that their 
meaning was more specific and clear.  For example, some 
hastily added relations had been labeled as "related to", 
"pertinent to", etc.  These labels were deemed so general 
that users often were at a loss as to how to use them or 
interpret their use.  The ontology review team also merged 
several classes, and regrouped others in more logical ways.  
This led to the creation of a deeper class hierarchy with 
many fewer upper-level classes. 

Further Testing 

The HCI team that conducted the CAIB IO use study 
recommended that before the final commercial version was 
released the ontology would be tested with experienced 
investigators to make sure that documents in the ontology 

would be classified in a manner consistent with its current 
design.  After the ontology was provided to Xerox for 
inclusion in a commercial version of IO, the HCI team 
conducted a second study of an early Xerox prototype, 
observing it being tested by experienced accident 
investigators.  A result showed that the extent of the 
ontology was still daunting to users when fully laid out.  
The study also found that users were confused about which 
link to use given particular task contexts.  In some cases, 
users did not understand the terminology used in the 
ontology. 

Additionally, Xerox conducted an internal study of use by 
engineers rather than investigators, and found that the 
engineers had difficulty discriminating between relations 
based on their labels.  This made linking items challenging.  
Creating items was similarly difficult due to the large 
number of candidate classes. 
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NASA is continuing to revise the IO ontology based on the 
results of these analyses.  One significant change under way 
includes definitions with each of the ontology’s classes and 
relation types.  Instead of relying solely on labels for classes 
and relations, users will be able to see a description with 
either a click or a mouse over in the IO interface. These 
descriptions will be linked together whenever possible 
through linguistic taxonomies such as WordNet [6].   

4. THE IO ONTOLOGY MODELING SYSTEM 

All elements of the ontology were represented using the IO 
ontology modeling system. This system reuses the IO 
instance creation interface to create and manage the IO 
ontology, i.e. the investigation ontology is modeled and 
structured in IO just as the investigation information is.  
This eliminated the need to develop a specialized editor, and 
provided a framework with many desirable qualities, such as 
supporting rapid, concurrent, and distributed development.  
Additionally, elements of the ontology are stored in the 
same database as instances in the IO knowledge base for all 
investigations based on the ontology. 

The expressive power of the IO ontology modeling system 
is roughly equivalent to that of Resource Description 
Framework Schema (RDFS) [7]. Plans for development 
include the adoption of the World Wide Web Consortium's 
Web Ontology Language (OWL) representation [8].  The IO 
ontology modeling system is similar to other knowledge 
representation systems in that there are three types of items: 
classes, literal properties, and relations.  Classes represent 
the types of concepts modeled in the system; some examples 
are "Person", "System", and "Causal Model".  Relations 
represent the types of links between instances of classes; an 
example is "Authored-By", a relation between "Person" and 
"Document".  Literal properties represent the attributes of 
the instances; an example is "Phone Number" is a literal 
property for "Person".  The classes are organized in a strict 
class hierarchy; for example, "Review Document" is a 
subclass of "Document" which is a subclass of "Evidence".  
Each subclass inherits all literal properties and relationships 
from the superclass and adds more of its own.  Multiple 
superclasses for a single class (multiple inheritance) are also 
supported. 

One of the unusual aspects of IO's ontology system is that 
all classes in IO have a corresponding “folder” class.  The 
semantics of these folder classes turned out to be 
surprisingly complex.  They were originally intended to 
represent sets of items of a given type (e.g., a set of 
hypotheses) to simplify certain interface interactions.  The 
folders were defined to contain only items of one type (or 
any of its subtypes).  Folder classes have only the basic 
metadata defined for all types of items but share the same 
relations as their corresponding class. This allows users to 
make links over sets of items, (e.g., to create a link between 
a mishap event and a related folder of hypotheses).  
However, links between folders were forbidden because the 

implied relationship between their enclosed elements was 
unclear (i.e., was the link to be applied to all combinations 
of elements in the linked folders or just some 
combinations?).  Early attempts to implement folder 
semantics in code proved difficult to maintain as the 
complexity of the interface grew.  Instead, the IO team 
developed an inference agent that used rule sets to 
"compile" a simpler specification into a complex 
representation of the ontology that encapsulated the correct 
folder semantics. The rule set was complex but was 
relatively insulated from changes in the interface, 
eliminating the ontology-code maintenance issues. 

Different groups of users frequently wanted distinct labels 
for the same class in the IO ontology (e.g., the same class 
might be variously termed "fault tree node", "causal model 
node", or "fault tree element").  IO customized the 
presentation of ontology classes for different groups of users 
through an aliasing mechanism called profiles.  Each profile 
represented display preferences for sets of classes, so that 
teams could use unique, familiar terms instead of the 
system-defined class names--for instance, allowing the class 
"Event Sequence Node" to be referred to by one group as 
“Event Sequence” and by another as “Potential Event Tree.”  
The profile mechanism only customized the presentation of 
classes.  Relations and literal properties are consistently 
displayed to all users who can view the associated classes.   
Profiles allowed IO to hide unneeded classes from user 
groups, an essential feature because Semantic Organizer 
(the underlying core system within IO) was developed to 
operate over a single large ontology covering many 
disparate disciplines, including scientific investigations, 
robotic exploration, and data mining.  A more powerful 
approach would have been to define appropriate ontologies 
for each user group and to use ontology alignments [9], or 
cross-ontology maps, to map these ontologies onto the 
common ontology.  The IO team is considering experiments 
with this alternative design.  

5. LIMITATIONS OF THE IO ONTOLOGY SYSTEM 

Limitations in the IO interface and the underlying system 
increased the difficulty of ontology development and 
maintenance: 

Efficiency 

Built primarily with Java servlets, the interface suffers 
momentary delays due to network transmission time, 
browser rendering, etc.  Though these delays are rarely more 
than a few seconds, they become more significant for 
complex tasks, such as ontology development, that involve 
more than just a few user interface interactions. In addition, 
the inference agent used to be several orders of magnitude 
slower, and it was not uncommon to wait a day for ontology 
changes to be fully compiled. Refinements to the inference 
agent have eliminated this problem, but much of the 
ontology development was done using the slower inference 
agent. 
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Closed environment 

Despite the similarities in representational power, IO did not 
support export or import to any standard format.  Thus, it 
was not possible to examine or edit the ontology using other 
editing tools, such as Protégé.  Nor was it possible to 
develop the ontology in another installation of IO (like on a 
development server) and import the changes, since ontology 
was stored together with all data from the investigation 
itself.  This made it difficult for ontology developers to 
experiment with changes to the ontology without actually 
making them in the production system. 

Lack of expressivity 

The expressive power of the IO knowledge representation 
format was mostly adequate, but the particular ability to 
restrict the ranges of relations for subclasses was lacking.  
For example, if "Fault Tree Node" and "Event Sequence 
Node" are subclasses of "Causal Model Node", and the 
relation "Causal Model Node" has_child "Causal Model 
Node" is defined, it would be possible to make a has_child 
link between an instance of "Fault Tree Node" and an 
"Event Sequence Node".  To avoid this problem, ontology 
developers would make specialized versions of such 
relations for each subclass of "Causal Model Node" while 
avoiding the general case completely.   

Lack of flexibility 

Moving classes using the IO ontology editing tools was 
initially not possible and remains a difficult task.  
Particularly difficult was adding a new class as a super-class 
of an existing class.  It is also non-trivial to change the class 
of existing instances in the system if a user finds a better 
class or creates one.  Instances could not be mapped from an 
old class to a new class, nor could links be mapped to new 
relations or metadata to new literal properties.  In addition, 
the profiling mechanism was restricted to classes and did 
not include relations and literal properties.  This meant that 
all users who could see a class would see all the same literal 
properties and relations (if at least one of the range types 
was also viewable).  In many cases in which a user wanted 
to expand a profile, these system drawbacks prevented him 
from simply including an existing class or creating a super-
class of an existing class to include in the profile.  As a 
result, ontology developers would often create multiple, 
parallel branches of the ontology for different user groups, 
increasing ontological sprawl.  These limitations also meant 
that once users realized they did not need a class or relation, 
it was difficult to remove it from the system without losing 
data. 

Incomplete retraction of inferences 

As described above, the ontology modeling system used an 
inference agent to compile a specification of the ontology 
into a more complex representation that included the notion 
of folders. Though the inference agent was robust, the 
coupled truth maintenance mechanism was faulty and 
erratic.  As a result, removing elements from the ontology 

often had unpredictable effects.  This also led to ontological 
sprawl, because ontology developers understandably chose 
to make new classes rather than make significant 
modifications to existing classes.  In addition, multiple 
inheritance, though theoretically supported by the system, 
was deliberately avoided by ontology modelers because it 
was impossible to predict what would happen when 
changing classes with multiple parents. 

No specific support 

Furthermore, the lack of specific tools made ontology 
development and maintenance more difficult.  Until late in 
the investigations, there was no sufficient way to visualize 
the ontology, and no way to verify that it was properly set 
up, except by testing as a user of the targeted group. 

6. LESSONS LEARNED 

Domain experts are essential collaborators in the process of 
developing complete and correct ontologies for semantic 
web applications, supplying knowledge critical for defining 
specific and unambiguous classes, properties, and axioms.  
However, the experience developing this ontology shows 
that domain experts and users have difficulty recognizing 
the shortcomings of an ontology before they use them in an 
application, requiring an iteration of steps in the 
development of the ontology.  First, the domain expert, in 
collaboration with application developers, asserts a new set 
of knowledge representation statements for the ontology.  
These statements are then incorporated into the application 
(through the modified ontology).  End-users then formulate 
new requirements for the application, and relay them to the 
developers or the domain expert.  Finally, the domain expert 
translates the new requirements for the application into a 
new set of statements for the ontology, and the cycle 
repeats.  In other words, the ontology cannot be fully 
developed without use of the system, and thus, the system 
often must be deployed with an incomplete ontology.   

The iterative nature of the ontology development process 
means that features that provide ontology modeling 
flexibility are of high value and should be a development 
priority in ontology modeling system.  The ontology 
development environment should support quick and easy 
specification changes, including moving or deleting classes, 
properties and axioms.  For example, the ability to move 
classes easily around in class hierarchies is highly desirable.  
Domain experts often decide to change properties of new 
classes once they start using them.  Those classes might 
then be more appropriately placed elsewhere in a class 
hierarchy.  If relocating classes (or instances of classes) is 
difficult, the amount of work required to meet the 
knowledge representation requirements for the application 
will increase dramatically.  Similarly, changing the name 
(i.e., the display label) of a class should be simple and 
should not require other changes to the ontology.  Not only 
does easy relabeling of classes speed ontology development, 
it also promotes knowledge reuse; different groups of 
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domain users frequently want different labels for the same 
sets of classes. 

7. RECOMMENDATIONS FOR FUTURE WORK 

Develop Consistency Checking Tools 

The magnitude and dynamic nature of the IO ontology 
prevented the ontology engineers from maintaining a 
familiarity with the entire ontology.  Combined with the 
lack of consistency checking tools, the engineers repeatedly 
had difficulty finding and understanding the meaning of 
existing properties of classes in the investigation ontology, 
which contributed to the following problems: 

Element Duplication--Ontology engineers often 
unnecessarily created new literal properties, classes, or 
relations instead of reusing existing elements of the 
ontology. 

Element Misuse--Conversely, existing literal properties, 
relations, and classes were occasionally misused because the 
semantics were not clear from their labels, and the ontology 
elements were inadequately defined. 

Misplaced Classes--New classes were frequently misplaced 
in the class hierarchy because it was difficult to examine 
how two or more classes are similar. 

Flat Ontology--Ontology engineers frequently omitted 
modeling super-classes of required classes, making it 
difficult to expand on that work later or to reuse certain 
elements. 

Some of these observations were due in part to accelerated 
development schedules and the lack of a hierarchy of 
relations.  However, IO has no ready tools to help ontology 
modelers by providing a broad awareness of existing 
properties in the ontology.  Such tools could automatically 
select and propose reuse of existing properties for new 
classes.  They could also point out common properties of 
existing classes. 

Balance specialization and generality 

The experience of developing the IO ontology has 
highlighted the need to find a balance in the specialization 
of concepts in the ontology.  On the one hand, investigators 
need an investigation ontology that is sufficiently 
customized for their particular tasks.  On the other hand, 
overspecialization of concepts and properties in the 
ontology can make an application quite difficult to use.  
Additionally, overspecialized classes can be more difficult 
to map to those in another ontology.  In some organizations, 
such as the National Transportation Safety Board, 
investigation processes are sufficiently standardized that the 
use of a single standardized ontology for all investigations is 
practical.  In other organizations, such as NASA, the nature 
of the investigations varies substantially from one type to 

the next, as well as over time.  Ideally, a method to allow 
the easy specification of the IO ontology would exist to 
meet the user’s needs during the investigation while 
automatically maintaining mappings to other standard 
investigatory ontologies. 
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